Assume, in the beginning of The Big Bang, the Universe was a ball of positive energy, in the middle of a medium of negative energy.
Later it started absorbing negative energy and so started expanding.
As its positive energy density dropped below a threshold, DM particles got created near uniformly everywhere. As the Universe continued to expand, DM particles coalesced into filaments of the cosmic web.
The BB also created hydrogen and helium uniformly everywhere.
Later DM filaments provided guidance for matter, stars and galaxies to form. But we must realize this view leads to Baryon Asymmetry Problem!
What if, matter of our Universe got created thru a different mechanism, which is asymmetric?
If we look at our Universe, it looks like matter is coalesced in the central regions of DM filaments/clouds. What if matter is not coalesced, but got created in those central regions of DM clouds?
What if, whenever wherever DM cloud density goes above a certain threshold, particles of Standard Model are created, without their anti-particles? (And then later DM cloud density would drop below the threshold there, like a negative feedback mechanism. And if so that would mean total amount of DM in the Universe must be decreasing over time!)
And what if, DM particles are gravitons with extremely low mass/energy, and so with extremely large size (Compton Wavelength)?
So that maybe why we cannot detect them directly and why they cannot join with each other to create a BH etc. (There maybe a similar rule for them like Pauli Exclusion Principle?)
About Graviton from Wikipedia:
"The analysis of gravitational waves yielded a new upper bound on the mass of gravitons, if gravitons are massive at all. The graviton's Compton wavelength is at least 1.6×10^16 m, or about 1.6 light-years, corresponding to a graviton mass of no more than 7.7×10^-23 eV/c2.[17] This relation between wavelength and energy is calculated with the Planck-Einstein relation, the same formula which relates electromagnetic wavelength to photon energy."
https://en.wikipedia.org/wiki/Dark_energy
https://en.wikipedia.org/wiki/Dark_matter
https://en.wikipedia.org/wiki/Graviton
https://en.wikipedia.org/wiki/Pauli_exclusion_principle
https://en.wikipedia.org/wiki/Pair_production
https://en.wikipedia.org/wiki/Two-photon_physics
https://en.wikipedia.org/wiki/Baryon_asymmetry
https://en.wikipedia.org/wiki/Standard_Model
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.