Concept of “now” being relative implies unchanging 4D “Block Universe” (so future is predictable) and it comes from Relativity.

But QM says the opposite (future is unpredictable (only there is a certain probability for any future event)).

As we look at the Universe/reality starting at microscale (particle size) and go to macroscale, future events become more and more certain.

For example, think of how certain things you plan to do tomorrow: Can’t we say they are not perfectly certain but close?

But also think of how certain motion of Earth in its orbit tomorrow. Isn’t it much more certain (but still not perfectly certain)?

Future being unpredictable in microscale and later becoming more and more predictable at higher and higher scales also happens in Cellular Automata (which used for fluid simulation).

I think one clear implication of future becoming more and more predictable at higher and higher scales is that, time must be an emergent property.

Which in turn implies spacetime must be an emergent property.

Which in turn implies Relativity must be an emergent property.

I think I had read somewhere that equations of GR is similar to equations of some kind of (non-viscous?) fluid.

If so it would make sense considering Cellular Automata used for fluid simulation shows similar behavior to GR.

I just came across a part of an article from Scientific American September 2015 that says something very similar to what I had said about nature of time:

“Whenever people talk about a dichotomy, though, they usually aim to expose it as false. Indeed, many philosophers think it is meaningless to say whether the universe is deterministic or indeterministic. It can be either, depending on how big or complex your object of study is: particles, atoms, molecules, cells, organisms, minds, communities. “The distinction between determinism and indeterminism is a level-specific distinction,” says Christian List, a philosopher at the London School of Economics and Political Science. “If you have determinism at one particular level, it is fully compatible with indeterminism, both at higher levels and at lower levels.” The atoms in our brain can behave in a completely deterministic way while still giving us freedom of action because atoms and agency operate on different levels. Likewise, Einstein sought a deterministic subquantum level without denying that the quantum level was probabilistic.”

(All my comments above also published here:

http://scienceblogs.com/startswithabang/2017/08/13/comments-of-the-week-172-from-sodium-and-water-to-the-most-dangerous-comet-of-all/)

If the future (time) becomes more and more certain as we go from microscale to macroscale, here is a thought experiment for determining how exactly that happens:

Imagine in a vacuum chamber we dropped a single neutral Carbon atom from a certain height so many times and measured/determined how close it will hit the center of the target (circular) area with how much probability. And later we repeated the experiment with C60 molecules. And later we repeated the experiment with solid balls of 60 C60 molecules. And later we repeated the experiment with solid balls of 3600 C60 molecules. ...

I think what would happen is bigger and bigger solid balls would hit closer and closer to the center with higher and higher probabilities. And general graph (an exponential curve?) of the results would tell us how exactly future (time) becomes more and more certain.

A more advanced version of the thought experiment could be this:

Imagine we started the experiment with micro balls and with a very small drop height. And as the radius of the solid balls gets bigger and bigger, we increased the drop distance with the same size increase ratio as radius.

# FB36 Blog

## Wednesday, August 16, 2017

## Monday, August 7, 2017

### FUTURE OF PHYSICS

If we look at history of physics, is there a clear trend to allow us to guess its future?

What are the major milestones in physics history?

I think it could be said:

1) Ancient Greece (level) Physics

2) Galileo (level) Physics

3) Newton (level) Physics

4) Einstein (level) Physics

5) TOE (level) Physics(?)

I think there is indeed a clear trend if you think about it.

Each new revolution in physics brings something like an order of magnitude increase in complexity of math (calculations), not just a new theory.

So I would guess doing calculations to solve physics problems using TOE will be practically impossible using pen and paper only.

I think it will require a (quantum) computer.

(Realize that all physics problems (where answer is possible) can be solved today using non-quantum (super) computers/calculators/pen&paper.)

I think if Universe (or Reality) turns out to be a Cellular Automata design running on an ND matrix qubit (register) quantum computer (with Planck scale cells)

then it would fit into above guess about future of physics (TOE) perfectly.

What are the major milestones in physics history?

I think it could be said:

1) Ancient Greece (level) Physics

2) Galileo (level) Physics

3) Newton (level) Physics

4) Einstein (level) Physics

5) TOE (level) Physics(?)

I think there is indeed a clear trend if you think about it.

Each new revolution in physics brings something like an order of magnitude increase in complexity of math (calculations), not just a new theory.

So I would guess doing calculations to solve physics problems using TOE will be practically impossible using pen and paper only.

I think it will require a (quantum) computer.

(Realize that all physics problems (where answer is possible) can be solved today using non-quantum (super) computers/calculators/pen&paper.)

I think if Universe (or Reality) turns out to be a Cellular Automata design running on an ND matrix qubit (register) quantum computer (with Planck scale cells)

then it would fit into above guess about future of physics (TOE) perfectly.

## Monday, July 31, 2017

### Physics Of Star Trek

I saw maybe all Star Trek TV show episodes and movies.

Below I will try to provide more plausible ways of realizing similar technologies according to known laws of physics of our Universe.

I do not know if similar explanations were provided by anyone before.

Super Energy Sources:

They could be portable fusion reactors which are almost perfectly efficient.

They could provide continuous power (similar to DC) or as repeating pulses (similar to AC).

There maybe super batteries that store a dense cloud of electron gas in vacuum (or as a BEC?)?

Stun guns:

Imagine a super powerful gun creates conductive paths in air using UV pulse/continuous lasers, momentarily.

It sends a powerful electroshock to the target from those conductive paths.

(I think this tech is already developing currently.)

Teleportation:

Imagine two teleportation machines (chambers).

The sender machine creates some kind of quantum shock wave that instantly destroys the target object into gamma photons that carry the same quantum information.

That information sent to the receiver machine which has a giant BEC (that is made of same kind of atoms/molecules with same proportions as the target object?).

When the information is applied to the BEC (instantly, like a quantum shock wave), it somehow instantly quantum mechanically collapses into an exact copy of the object.

Phasers:

Instantly destroys the target object using similar quantum shock wave that used in teleportation.

(Target object instantly gets destroyed similar to teleportation, but there is no receiver for its quantum information.)

Artificial Gravity:

Imagine if we had small coils that can create high level positive/negative spacetime curvatures around them (spherical/cylindrical).

We could place a grid of those coils under floors etc to create artificial gravity.

Force Fields:

Imagine if we created spherical/cylindrical spaceships that covered by a dense grid of (+/-) gravity coils,

and also a dense grid of (superconductor) coils that can create (+/-) electric/magnetic fields.

Would not be possible to use them to create "force fields" all around the spaceships to deflect any (atom/particle/photon) kind of attack?

Cloaking Fields:

Imagine if we created spherical/cylindrical spaceships that covered by a dense grid of (+/-) gravity coils.

Would not be possible to use them to create a photon deflection field all around the spaceships?

Warp Speed:

Imagine if we created spherical/cylindrical spaceships that covered by a dense grid of (+/-) gravity coils.

Would not be possible to use them to create a warp bubble all around the spaceships to act like an Alcubierre Drive?

Sub-space Communication:

(Since we assume we have ability to manipulate the curvature of spacetime)

Imagine we have tech to create micro worm holes as twins and able to trap them indefinitely.

A communication signal enters to either one and instantly comes out of the other one.

Each time we create a new set of twin micro worm holes, we keep one in a central hub on Earth,

and the other carried by a spaceship or placed on a different planet/moon/space station.

(The same tech could also be useful to create and trap micro Black Holes, which maybe useful as compact batteries.)

Electronic Dampening Field:

Imagine EMP created like a standing wave using a grid of phased array EMP generators.

Spaceships with hulls that can withstand against almost any kind of attacks at least for a while if necessary:

How about metallic hydrogen or another solid material that we created using ultrapressure (and temperature)?

I think it is also clear that Star Trek Physics require devices with ability to create strong positive and negative spacetime curvatures for sure.

How could it work according to laws and limitations of known physics, assuming they are always must be obeyed?

According to General Relativity, spacetime bends in the presence of positive or negative mass/energy(/pressure/acceleration).

What if we destroyed a small amount of matter/antimatter in a spot (as pulses)?

(Could there be an economical way to create as much as antimatter as we need? Think about how we could easily induce a permanent magnet to permanently switch its N and S sides, by momentarily creating a strong enough reverse magnetic field using an electromagnet.

Could there be any way to create a special quantum field/shockwave (using an electric and/or magnetic field generator or a laser?)

that when it passes thru a sample of matter (trapped in mid-vacuum), it induces that matter to instantly switch to antimatter (so that instantly all electrons switch to positrons, all protons to anti-protons, all neutrons to anti-neutrons)?)

What if we created an arbitrarily strong volume/spot of magnetic and/or electric field(s)?

What if we created a spot of ultrapressure using a tech way beyond any diamond anvil?

What if we created a spot of negative ultrapressure (by using pulling force)?

(Imagine if we had or created a (solid?) material that is ultrastrong against pulling force (even for a moment)?)

What if we had or created an ultrastrong (solid?) disk/sphere/ring and trapped it in mid-vacuum.

Later we created an ultrapowerful rotational force on it (even for a moment) using ultrapowerful magnetic field.

So that the object gained (even for a moment) an ultrahigh speed and/or positive/negative acceleration?

Below I will try to provide more plausible ways of realizing similar technologies according to known laws of physics of our Universe.

I do not know if similar explanations were provided by anyone before.

Super Energy Sources:

They could be portable fusion reactors which are almost perfectly efficient.

They could provide continuous power (similar to DC) or as repeating pulses (similar to AC).

There maybe super batteries that store a dense cloud of electron gas in vacuum (or as a BEC?)?

Stun guns:

Imagine a super powerful gun creates conductive paths in air using UV pulse/continuous lasers, momentarily.

It sends a powerful electroshock to the target from those conductive paths.

(I think this tech is already developing currently.)

Teleportation:

Imagine two teleportation machines (chambers).

The sender machine creates some kind of quantum shock wave that instantly destroys the target object into gamma photons that carry the same quantum information.

That information sent to the receiver machine which has a giant BEC (that is made of same kind of atoms/molecules with same proportions as the target object?).

When the information is applied to the BEC (instantly, like a quantum shock wave), it somehow instantly quantum mechanically collapses into an exact copy of the object.

Phasers:

Instantly destroys the target object using similar quantum shock wave that used in teleportation.

(Target object instantly gets destroyed similar to teleportation, but there is no receiver for its quantum information.)

Artificial Gravity:

Imagine if we had small coils that can create high level positive/negative spacetime curvatures around them (spherical/cylindrical).

We could place a grid of those coils under floors etc to create artificial gravity.

Force Fields:

Imagine if we created spherical/cylindrical spaceships that covered by a dense grid of (+/-) gravity coils,

and also a dense grid of (superconductor) coils that can create (+/-) electric/magnetic fields.

Would not be possible to use them to create "force fields" all around the spaceships to deflect any (atom/particle/photon) kind of attack?

Cloaking Fields:

Imagine if we created spherical/cylindrical spaceships that covered by a dense grid of (+/-) gravity coils.

Would not be possible to use them to create a photon deflection field all around the spaceships?

Warp Speed:

Imagine if we created spherical/cylindrical spaceships that covered by a dense grid of (+/-) gravity coils.

Would not be possible to use them to create a warp bubble all around the spaceships to act like an Alcubierre Drive?

Sub-space Communication:

(Since we assume we have ability to manipulate the curvature of spacetime)

Imagine we have tech to create micro worm holes as twins and able to trap them indefinitely.

A communication signal enters to either one and instantly comes out of the other one.

Each time we create a new set of twin micro worm holes, we keep one in a central hub on Earth,

and the other carried by a spaceship or placed on a different planet/moon/space station.

(The same tech could also be useful to create and trap micro Black Holes, which maybe useful as compact batteries.)

Electronic Dampening Field:

Imagine EMP created like a standing wave using a grid of phased array EMP generators.

Spaceships with hulls that can withstand against almost any kind of attacks at least for a while if necessary:

How about metallic hydrogen or another solid material that we created using ultrapressure (and temperature)?

I think it is also clear that Star Trek Physics require devices with ability to create strong positive and negative spacetime curvatures for sure.

How could it work according to laws and limitations of known physics, assuming they are always must be obeyed?

According to General Relativity, spacetime bends in the presence of positive or negative mass/energy(/pressure/acceleration).

What if we destroyed a small amount of matter/antimatter in a spot (as pulses)?

(Could there be an economical way to create as much as antimatter as we need? Think about how we could easily induce a permanent magnet to permanently switch its N and S sides, by momentarily creating a strong enough reverse magnetic field using an electromagnet.

Could there be any way to create a special quantum field/shockwave (using an electric and/or magnetic field generator or a laser?)

that when it passes thru a sample of matter (trapped in mid-vacuum), it induces that matter to instantly switch to antimatter (so that instantly all electrons switch to positrons, all protons to anti-protons, all neutrons to anti-neutrons)?)

What if we created an arbitrarily strong volume/spot of magnetic and/or electric field(s)?

What if we created a spot of ultrapressure using a tech way beyond any diamond anvil?

What if we created a spot of negative ultrapressure (by using pulling force)?

(Imagine if we had or created a (solid?) material that is ultrastrong against pulling force (even for a moment)?)

What if we had or created an ultrastrong (solid?) disk/sphere/ring and trapped it in mid-vacuum.

Later we created an ultrapowerful rotational force on it (even for a moment) using ultrapowerful magnetic field.

So that the object gained (even for a moment) an ultrahigh speed and/or positive/negative acceleration?

## Sunday, July 30, 2017

### 3D VOLUME SCANNER IDEA

I recently learned about an innovative method to get 3D scans of objects. It overcomes line of sight problem and captures the inner shape of the object also. It looks like a robot arm dips the object into water in different orientations. Each time how water level changed over time gets measured and from these measurements 3d object shape is calculated like a CAT scan.

I think these method can be improved upon greatly as follows:

Imagine we put a tight metal wire ring around the object we want to scan, maybe using a separate machine.

It could be a bendable but rigid, steel wire ring, or maybe bicycle wire ring, could be even a suitable kind of plastic.

The object could be in any orientation, hold tight by the ring.

Imagine we have an aquarium tank filled with liquid mercury

(which would keep the object dry unlike water, and also tank walls so that measurements would be more precise).

(Also mercury is conductive which would also make measurements easier using electronic sensor(s).)

(It could also be a cylindrical tank.)

Imagine inside of the tank we have a vertical bar that can move up and down a horizontal bar using electronic control.

Imagine that horizontal bar at its middle (down side) has a hook/lock for the wire ring (around the object).

That hook/lock has an electronically controlled motor that can rotate the wire ring (so the object) to any (vertical) angle.

(To prevent the ring/object moving like a pendulum when it is dipped into liquid (fast) each time, we could add a second horizontal bar with adjustable height, that has a hook/lock for the wire ring at its middle (up side). So the ring would be hold in place from its top and bottom points by two horizontal bars.)

Now imagine to take new measurements each time, we rotate the object a small and equal angular amount (within 360 degrees).

Then we dip the object fully inside the liquid (at constant speed) and take it out fully back (at constant speed).

Every time as we dip the object we record the changes in the liquid level in the tank over time.

(While the object fully dipped we could rotate it again and then record liquid level changes while we take the object fully out back

to get two sets of measurements at each cycle, instead of one.)

Of course mercury is highly toxic and reacts with some metals.

So it would be best to find a better liquid.

The liquid would need to be non-stick to keep scanned objects, tank walls dry. Minimal viscosity and density as possible, maximal temperature range with linear volume change based on temperature, constant volume under common different air pressures would be better. Stable (non-chemically active) and non-toxic are must.

Also electric conductivity would be a plus.

References:

https://www.sciencedaily.com/releases/2017/07/170721131954.htm

http://www.fabbaloo.com/blog/2017/7/25/water-displacement-3d-scanning-will-this-work

https://3dprintingindustry.com/news/3d-scanning-objects-dipping-water-118886/

I think these method can be improved upon greatly as follows:

Imagine we put a tight metal wire ring around the object we want to scan, maybe using a separate machine.

It could be a bendable but rigid, steel wire ring, or maybe bicycle wire ring, could be even a suitable kind of plastic.

The object could be in any orientation, hold tight by the ring.

Imagine we have an aquarium tank filled with liquid mercury

(which would keep the object dry unlike water, and also tank walls so that measurements would be more precise).

(Also mercury is conductive which would also make measurements easier using electronic sensor(s).)

(It could also be a cylindrical tank.)

Imagine inside of the tank we have a vertical bar that can move up and down a horizontal bar using electronic control.

Imagine that horizontal bar at its middle (down side) has a hook/lock for the wire ring (around the object).

That hook/lock has an electronically controlled motor that can rotate the wire ring (so the object) to any (vertical) angle.

(To prevent the ring/object moving like a pendulum when it is dipped into liquid (fast) each time, we could add a second horizontal bar with adjustable height, that has a hook/lock for the wire ring at its middle (up side). So the ring would be hold in place from its top and bottom points by two horizontal bars.)

Now imagine to take new measurements each time, we rotate the object a small and equal angular amount (within 360 degrees).

Then we dip the object fully inside the liquid (at constant speed) and take it out fully back (at constant speed).

Every time as we dip the object we record the changes in the liquid level in the tank over time.

(While the object fully dipped we could rotate it again and then record liquid level changes while we take the object fully out back

to get two sets of measurements at each cycle, instead of one.)

Of course mercury is highly toxic and reacts with some metals.

So it would be best to find a better liquid.

The liquid would need to be non-stick to keep scanned objects, tank walls dry. Minimal viscosity and density as possible, maximal temperature range with linear volume change based on temperature, constant volume under common different air pressures would be better. Stable (non-chemically active) and non-toxic are must.

Also electric conductivity would be a plus.

References:

https://www.sciencedaily.com/releases/2017/07/170721131954.htm

http://www.fabbaloo.com/blog/2017/7/25/water-displacement-3d-scanning-will-this-work

https://3dprintingindustry.com/news/3d-scanning-objects-dipping-water-118886/

## Saturday, July 29, 2017

### A Simple Derivation of General Relativity

According to Einstein's equivalence principle, a person accelerating upwards in an elevator (in outer space with no gravity) cannot distinguish it from gravity (downwards). Then acceleration and gravity are physically equivalent.

Assume a (laser) light send horizontally from one side (wall) of the elevator to other side (wall).

What is the Y coordinate of the beam for given X or T, if upwards constant speed of elevator is V?

x=c*t (assuming x is positive towards right)

y=v*t (assuming y is positive downwards)

m=y/x=(v*t)/(c*t)=v/c

Applying parametric to implicit conversion:

x=c*t => t=x/c => y=v*(x/c)=(v/c)*x=m*x => line with tangent m

What is the Y coordinate of the beam for given X or T, if upwards constant acceleration of elevator is A?

x=c*t (assuming x is positive towards right)

y=a*t^2 (assuming y is positive downwards)

Applying parametric to implicit conversion:

x=c*t => t=x/c => y=a*(x/c)^2=(a/c^2)*x^2 (parabola)

Geometry says:

if a parabola is y=x^2/(4*f) => f: focal length

The focal length of a parabola is half of its radius of curvature at its vertex => f=r/2

The radius of curvature is the reciprocal of the curvature (curvature of circle: 1/r)

Then:

y=(a/c^2)*x^2=x^2/(4*f) => a/c^2=1/(4*f) => 4*f*a/c^2=1 => f=c^2/(4*a)

r=2*f=c^2/(2*a) => curvature=1/r=1/(c^2/(2*a))=(1/1)/(c^2/(2*a))=(1/1)*((2*a)/c^2)=(2*a)/c^2

Newton's laws say: F=G*M*m/d^2 and F=m*a => Acceleration for unit mass in gravitational field of mass m:

a=F/m=F/1=G*M*1/d^2=G*M/d^2

Then:

curvature=(2*a)/c^2=(2*G*M/d^2)/c^2=2*G*M/c^2/d^2

Is this formula to calculate spacetime curvature correct (using mass of the object (star, planet etc) and distance from its gravitational center)? I have no idea. I searched online to find a similar formula to compare but could not found it.

If the formula is wrong I would like to know its correct expression (using same input variables M and d) of course. And also then, if it is possible to derive that formula from the same thought experiment.

Assume a (laser) light send horizontally from one side (wall) of the elevator to other side (wall).

What is the Y coordinate of the beam for given X or T, if upwards constant speed of elevator is V?

x=c*t (assuming x is positive towards right)

y=v*t (assuming y is positive downwards)

m=y/x=(v*t)/(c*t)=v/c

Applying parametric to implicit conversion:

x=c*t => t=x/c => y=v*(x/c)=(v/c)*x=m*x => line with tangent m

What is the Y coordinate of the beam for given X or T, if upwards constant acceleration of elevator is A?

x=c*t (assuming x is positive towards right)

y=a*t^2 (assuming y is positive downwards)

Applying parametric to implicit conversion:

x=c*t => t=x/c => y=a*(x/c)^2=(a/c^2)*x^2 (parabola)

Geometry says:

if a parabola is y=x^2/(4*f) => f: focal length

The focal length of a parabola is half of its radius of curvature at its vertex => f=r/2

The radius of curvature is the reciprocal of the curvature (curvature of circle: 1/r)

Then:

y=(a/c^2)*x^2=x^2/(4*f) => a/c^2=1/(4*f) => 4*f*a/c^2=1 => f=c^2/(4*a)

r=2*f=c^2/(2*a) => curvature=1/r=1/(c^2/(2*a))=(1/1)/(c^2/(2*a))=(1/1)*((2*a)/c^2)=(2*a)/c^2

Newton's laws say: F=G*M*m/d^2 and F=m*a => Acceleration for unit mass in gravitational field of mass m:

a=F/m=F/1=G*M*1/d^2=G*M/d^2

Then:

curvature=(2*a)/c^2=(2*G*M/d^2)/c^2=2*G*M/c^2/d^2

Is this formula to calculate spacetime curvature correct (using mass of the object (star, planet etc) and distance from its gravitational center)? I have no idea. I searched online to find a similar formula to compare but could not found it.

If the formula is wrong I would like to know its correct expression (using same input variables M and d) of course. And also then, if it is possible to derive that formula from the same thought experiment.

## Monday, July 17, 2017

### What Is Spacetime?

First assume there is an ND uniform matrix (like a crystal) cellular automata quantum computer (UCAQC) where each of its cells are Planck length size and made of M qubits (like a register (set)).

Assume our universe is a bubble/ball of information (energy) expanding in that matrix.

Assume time step of UCAQC is Planck time (which leads to speed of light being the ultimate speed).

Assume each particle of Standard Model is a ball/cluster/packet of information moving around.

Assume when two (or more) particles collide, they temporarily create a combined information (energy) ball that is unstable because (for some reason) only the particles of Standard Model is allowed, so the newly created unstable particle is forced to decay/divide into a set of particles allowed by Standard Model.

Naturally existence of a Newtonian spacetime is easy to explain for such a universe.

(Also realize it is naturally compatible with quantum mechanics.)

But how about Relativity?

I think Special Relativity is because flow of information about events is limited by speed of light for all observers.

A thought experiment:

Imagine we have a spaceship in Earth's orbit that sends blue laser to a receiver on the ground.

Imagine the spaceship starts moving away from Earth with its speed keep increasing towards speed of light.

Imagine it reaches a speed so that its laser light looks red to us and to our measurement instruments.

(Because of Special Relativity.)

Realize that an observer on the spaceship would still see blue laser photons leaving the device.

But an observer on the ground sees and measures red laser photons.

The question is, are the laser photons actually lost energy?

Are they really blue (higher energy) or red (lower energy) photons?

Cannot we say they are actually blue photons, same as when they were created, but we see/detect them as red photons because of our relative (observer) motion.

What is really happening is same as how Doppler Effect changes frequency of sounds.

Different observers see photons with different energies because density of information flow is different for each observer,

even though speed of information flow is the same (speed of light) for all observers.

That is why I do not think expansion of the universe actually cause photons to lose energy.

I think all photons stay the same as when they were created, but they can be perceived with different energies by different observers.

(So when we measure energy of a photon, we actually measure its information density; not its total information (which is constant and equal for all photons).)

Similarly, I think (positive) spacetime curvature around objects with mass, compresses Compton wavelength of all particles present.

In case of Black Holes, Compton wavelength of a particle gets compressed as it approaches the event horizon.

Upon reaching the event horizon, the wavelength drops to Planck length and you get Planck particles (which is I think what Black Holes are made of).

Assume our universe is a bubble/ball of information (energy) expanding in that matrix.

Assume time step of UCAQC is Planck time (which leads to speed of light being the ultimate speed).

Assume each particle of Standard Model is a ball/cluster/packet of information moving around.

Assume when two (or more) particles collide, they temporarily create a combined information (energy) ball that is unstable because (for some reason) only the particles of Standard Model is allowed, so the newly created unstable particle is forced to decay/divide into a set of particles allowed by Standard Model.

Naturally existence of a Newtonian spacetime is easy to explain for such a universe.

(Also realize it is naturally compatible with quantum mechanics.)

But how about Relativity?

I think Special Relativity is because flow of information about events is limited by speed of light for all observers.

A thought experiment:

Imagine we have a spaceship in Earth's orbit that sends blue laser to a receiver on the ground.

Imagine the spaceship starts moving away from Earth with its speed keep increasing towards speed of light.

Imagine it reaches a speed so that its laser light looks red to us and to our measurement instruments.

(Because of Special Relativity.)

Realize that an observer on the spaceship would still see blue laser photons leaving the device.

But an observer on the ground sees and measures red laser photons.

The question is, are the laser photons actually lost energy?

Are they really blue (higher energy) or red (lower energy) photons?

Cannot we say they are actually blue photons, same as when they were created, but we see/detect them as red photons because of our relative (observer) motion.

What is really happening is same as how Doppler Effect changes frequency of sounds.

Different observers see photons with different energies because density of information flow is different for each observer,

even though speed of information flow is the same (speed of light) for all observers.

That is why I do not think expansion of the universe actually cause photons to lose energy.

I think all photons stay the same as when they were created, but they can be perceived with different energies by different observers.

(So when we measure energy of a photon, we actually measure its information density; not its total information (which is constant and equal for all photons).)

Similarly, I think (positive) spacetime curvature around objects with mass, compresses Compton wavelength of all particles present.

In case of Black Holes, Compton wavelength of a particle gets compressed as it approaches the event horizon.

Upon reaching the event horizon, the wavelength drops to Planck length and you get Planck particles (which is I think what Black Holes are made of).

## Friday, July 14, 2017

### Universal Cellular Automata Quantum Computer

If Universe is a qubit-based CA quantum computer operating in Planck scale, how it can explain QM and Relativity?

Human mind operating like a quantum computer (software) can explain Observer Effect:

Because of quantum information exchanges between qubits of experiment and qubits of mind of observer(s), like operations in a quantum computer.

Particles of the Standard Model (6 quarks + 6 leptons + 4 gauge bosons + 1 Higgs boson) + Planck particle can be explained as clusters (spherical?) of information.

(Then using the list of quantum properties common to all particles (like energy, mass, charge, spin, ?), it maybe possible to determine how many qubits (at least) for each (Planck size) cell of the universe CA quantum computer.)

(How particle interactions can be explained?)

It can also explain Relativity because speed of light limit is because of (constant) speed of information transmission of the Universe CA quantum computer.

So each observer can receive information only at speed of light (constant). Like non-moving and moving observers watching the same events would disagree on how fast events unfolding, because each can receive information (light) generated from the events in same speed but with different information flow density (frequency).

Gravity can be explained as an entropic force.

The Big Bang can be explained as, initially creating a ball of (maximum) dense information (energy) in the center of the Universal (CA) Quantum Computer (UCAQC).

Imagine there is a tendency of information flow from more dense to less dense volumes of UCAQC, and it causes the expansion of the universe.

I think in the beginning times of the Big Bang, this expansion force should be at its most powerful but later it would drop.

It could be that:

F = U * (1 - V / W)

Where:

F: Expansion Force at time t after Big Bang

U: an unknown constant

V: Volume of Universe Information Ball at time t after Big Bang

W: Max Possible Volume of Universe Information Ball (at time infinity after Big Bang)

Or maybe the expansion force /speed could be depending on the current (uniform) curvature of V.

(I had explained how to calculate universal (uniform) curvature in one of my previous blog posts.)

(But either case, it would mean there is really no such thing as Dark Energy and neither a universal field of inflation.)

Human mind operating like a quantum computer (software) can explain Observer Effect:

Because of quantum information exchanges between qubits of experiment and qubits of mind of observer(s), like operations in a quantum computer.

Particles of the Standard Model (6 quarks + 6 leptons + 4 gauge bosons + 1 Higgs boson) + Planck particle can be explained as clusters (spherical?) of information.

(Then using the list of quantum properties common to all particles (like energy, mass, charge, spin, ?), it maybe possible to determine how many qubits (at least) for each (Planck size) cell of the universe CA quantum computer.)

(How particle interactions can be explained?)

It can also explain Relativity because speed of light limit is because of (constant) speed of information transmission of the Universe CA quantum computer.

So each observer can receive information only at speed of light (constant). Like non-moving and moving observers watching the same events would disagree on how fast events unfolding, because each can receive information (light) generated from the events in same speed but with different information flow density (frequency).

Gravity can be explained as an entropic force.

The Big Bang can be explained as, initially creating a ball of (maximum) dense information (energy) in the center of the Universal (CA) Quantum Computer (UCAQC).

Imagine there is a tendency of information flow from more dense to less dense volumes of UCAQC, and it causes the expansion of the universe.

I think in the beginning times of the Big Bang, this expansion force should be at its most powerful but later it would drop.

It could be that:

F = U * (1 - V / W)

Where:

F: Expansion Force at time t after Big Bang

U: an unknown constant

V: Volume of Universe Information Ball at time t after Big Bang

W: Max Possible Volume of Universe Information Ball (at time infinity after Big Bang)

Or maybe the expansion force /speed could be depending on the current (uniform) curvature of V.

(I had explained how to calculate universal (uniform) curvature in one of my previous blog posts.)

(But either case, it would mean there is really no such thing as Dark Energy and neither a universal field of inflation.)

Subscribe to:
Posts (Atom)